Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation

نویسندگان

  • Arnold Hayer
  • Miriam Stoeber
  • Danilo Ritz
  • Sabrina Engel
  • Hemmo H. Meyer
  • Ari Helenius
چکیده

Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that "caveosomes," previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cargo ubiquitination is essential for multivesicular body intralumenal vesicle formation.

The efficient formation of a variety of transport vesicles is influenced by the presence of cargo, suggesting that cargo itself might have a defining role in vesicle biogenesis. However, definitive in vivo experiments supporting this concept are lacking, as it is difficult to eliminate endogenous cargo. The Endosomal Sorting Complexes Required for Transport (ESCRT) apparatus sorts ubiquitinated...

متن کامل

A mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17

Damaged mitochondrial content is packaged in mitochondrial-derived vesicles (MDVs), which are targeted for degradation through an unclear mechanism. McLelland et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201603105) show that the SNARE Syntaxin-17 mediates MDV fusion with endolysosomes, promoting the delivery of mitochondrial cargo to lysosomes for degradation.

متن کامل

Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease

The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposit...

متن کامل

Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies

After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs--an adaptor--like protein that binds membrane PtdIns3P via a FYVE motif-and then by ESCRT complexes...

متن کامل

ESCRT-mediated vesicle concatenation in plant endosomes

Ubiquitinated plasma membrane proteins (cargo) are delivered to endosomes and sorted by endosomal sorting complex required for transport (ESCRT) machinery into endosome intralumenal vesicles (ILVs) for degradation. In contrast to the current model that postulates that ILVs form individually from inward budding of the endosomal limiting membrane, plant ILVs form as networks of concatenated vesic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 191  شماره 

صفحات  -

تاریخ انتشار 2010